Cadmium selenide is an inorganic compound with the formula CadmiumSelenide. It is a black to red-black solid that is classified as a II-VI semiconductor of the n-type. It is a pigment, but applications are declining because of environmental concerns.
Cadmium selenide may also be produced in the form of nanoparticles. (see applications for explanation) Several methods for the production of CdSe nanoparticles have been developed: arrested precipitation in solution, synthesis in structured media, high temperature pyrolysis, sonochemical, and radiolytic methods are just a few.
Production of cadmium selenide by arrested precipitation in solution is performed by introducing and trioctylphosphine selenide (TOPSe) precursors into a heated solvent under controlled conditions.
Synthesis in structured environments refers to the production of cadmium selenide in liquid crystal or surfactant solutions. The addition of surfactants to solutions often results in a phase change in the solution leading to a liquid crystallinity. A liquid crystal is similar to a solid crystal in that the solution has long range translational order. Examples of this ordering are layered alternating sheets of solution and surfactant, micelles, or even a hexagonal arrangement of rods.
High temperature pyrolysis synthesis is usually carried out using an aerosol containing a mixture of volatile cadmium and selenium precursors. The precursor aerosol is then carried through a furnace with an inert gas, such as hydrogen, nitrogen, or argon. In the furnace the precursors react to form CdSe as well as several by-products.
CdSe quantum dots have been implemented in a wide range of applications including solar cells, light emitting diodes, and biofluorescent tagging. CdSe-based materials also have potential uses in biomedical imaging. Human tissue is permeable to near infra-red light. By injecting appropriately prepared CdSe nanoparticles into injured tissue, it may be possible to image the tissue in those injured areas.
CdSe quantum dots are usually composed of a CdSe core and a ligand shell. Ligands play important roles in the stability and solubility of the nanoparticles. During synthesis, ligands stabilize growth to prevent aggregation and precipitation of the nanocrystals. These capping ligands also affect the quantum dot's electronic and optical properties by passivating surface electronic states. An application that depends on the nature of the surface ligands is the synthesis of CdSe thin films. The density of the ligands on the surface and the length of the ligand chain affect the separation between nanocrystal cores which in turn influence stacking and conductivity. Understanding the surface structure of CdSe quantum dots in order to investigate the structure's unique properties and for further functionalization for greater synthetic variety requires a rigorous description of the ligand exchange chemistry on the quantum dot surface.
A prevailing belief is that trioctylphosphine oxide (TOPO) or trioctylphosphine (TOP), a neutral ligand derived from a common precursor used in the synthesis of CdSe dots, caps the surface of CdSe quantum dots. However, results from recent studies challenge this model. Using NMR, quantum dots have been shown to be nonstoichiometric meaning that the cadmium to selenide ratio is not one to one. CdSe dots have excess cadmium cations on the surface that can form bonds with anionic species such as carboxylate chains. The CdSe quantum dot would be charge unbalanced if TOPO or TOP were indeed the only type of ligand bound to the dot.
The CdSe ligand shell may contain both X type ligands which form with the metal and L type ligands that form . It has been shown that these ligands can undergo exchange with other ligands. Examples of X type ligands that have been studied in the context of CdSe nanocrystal surface chemistry are sulfides and thiocyanates. Examples of L type ligands that have been studied are amines and phosphines (ref). A ligand exchange reaction in which tributylphosphine ligands were displaced by primary alkylamine ligands on chloride terminated CdSe dots has been reported. Stoichiometry changes were monitored using proton and phosphorus NMR. Photoluminescence properties were also observed to change with ligand moiety. The amine bound dots had significantly higher photoluminescent than the phosphine bound dots.
CdSe nanoparticles
Applications
Natural occurrence
Safety information
External links
|
|